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Abstract—This paper deals with the optimization of 

operational tasks in the case of airborne radar for maritime 

surveillance. The first step of the process is to learn the 

environment using a given waveform and associated processing. 

The objective of this learning is to provide a map of what can be 

detected or not, considering the analysis of the mixture of sea 

clutter and noise. In the case of a manned system, the result can 

be presented to the operator. In a second step, the proposed 

method aims at suggesting to the operator the mode or waveform 

that would be the most suitable for performing a given task. 

When appropriate, the most suitable platform altitude or the best 

horizontal viewing point is suggested to the crew. These 

recommendations are obtained by inferring the attainable 

performances with another waveform or another processing or 

another point of observation, etc. from the learning carried out in 

the first stage. This inference is based on a modelling of the 

mixture of sea-clutter and noise. The last step is to apply these 

recommendations. On a stand-alone platform, this will be done 

automatically by acting at the level of radar management and, 

when appropriate, at the level of the platform autopilot. In the 

longer term, this concept paves the way for autonomy: sensors or 

platforms capable of autonomous decision making without an 

operator being in the decision loop; and therefore without the 

need for a permanent high-speed bidirectional data link between 

the ground control and the platform(s). 

Keywords:  Cognitive radar; Maritime Surveillance; Sea-clutter 

modelling; Sensor Autonomy. 

I.  INTRODUCTION 

Modern airborne radars for maritime surveillance have 
many modes for detecting and tracking the marine targets. 
Each of them is designed to be optimal facing a given target 
class. Indeed, for technological problems, but also for physical 
limitations, it is not possible to have a single mode capable of 
detecting optimally any type of target in any condition. Today, 
the selection of the most appropriate mode must therefore be 
carried out with care by a qualified radar operator. In addition, 
the performances enhancement of new radars involves more 
complex signal processing than in the past. This increasing 
complexity associated with many modes makes it difficult for 
an operator to predict the effective capability of the sensor in a 
given environment, for example from the examination of the 
raw video. Finally, manual optimization is hardly conceivable 
in the case of radars on-board UAS (Unmanned Air System) 
because of the high demands for RF (Radio-Frequency) data-
link that would be required. Hence, a process of automatic 

optimization (choice of transmitted waveforms, radar modes, 
signal processing, etc.) is desirable. Such a concept falls within 
the framework of cognitive systems. 

II. COGNITIVE RADAR 

Cognitive Radar has been the object of many researches 
ove                            [1]- [5]. Cognition is the set of major 
functions of the mind related to knowledge (perception, 
memory, reasoning and action). Thus, a cognitive sensor 
periodically runs an optimization loop comprising these 
functions related to knowledge ( Fig. 1). The processes used in 
cognitive radar should not be confused with those used in 
adaptive processing. Indeed, in the latter case, there is neither 
intelligence nor external information added to the processing: 
the adaptive processing merely performs optimal filtering 
according to a priori assumptions on received signals. 

Sensing the 
Environment

Reasonning

Action 
(optimization)

 
Fig. 1. Optimization Loop. 

The aim of this article is to present cognitive mechanisms 
that optimize operational tasks in the particular case of airborne 
maritime surveillance radar. We assume in the following that 
the objective is to detect targets, in a given area, whose RCS 
(Radar Cross Section) is less than a given threshold ( Fig. 2). 

The paper is organized as follows: 

 Section  III describes the proposed cognitive 
optimization method. 

 Section  IV gives an example of implementation. 

 Section  V concludes the paper. 
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III. COGNITIVE OPTIMIZATION OF AN OPERATIONAL TASK 

A. First Phase: Perception of the Environment 

The received signal is recorded during an antenna scan 
using a given waveform. The instrumental domain (Distance - 
Azimuth) is subdivided into small patches. In each patch, a 
statistical model describing the mixture of clutter and noise 
(environmental model) is fitted to the samples to estimate the 
parameters of the statistical model. Then, knowing the power 
budget of the radar, for a given target fluctuation model (e.g. 
Swerling 1, 2, etc.), the RCS of the Minimum Detectable 
Target (MDT) is calculated (for required PD and PFA).  Fig. 2 
illustrates the result of this processing. Details are given in  [6].  

Area of 

Interest

 
Fig. 2. Raw radar signal (left), map of Minimum Detectable Target (right). 

The colour indicate the value of MDT: dark blue: very small targets are 
detectable; orange: only strongest targets are detectable. 

B. Second Phase: Reasoning  

1) Inference Phase 
The objective of optimization that is described here is to be 

able to detect any target having a RCS above the threshold T  

within the area of interest  ( Fig. 2): 

 MM ,)( TD   

where D is the RCS of the MDT. If the condition (1) is met 

with the current waveform, the problem is completed. 
Otherwise, the environment model described in paragraph  2) is 
used to infer the sensitivity gain corresponding to the variation 
of the following means of action (cf.  Fig. 3): 

 The waveform and dedicated processing among all 
available waveforms. 

 The altitude of the platform and/or its horizontal 

position with respect to the area of interest . 

The most convenient means of action is to play on the 
waveform and the associated processing since this does not 
involve any constraint on the flight path of the platform, hence 
the interest of software-defined radars. The possibility of action 
on the position of the platform is a specificity of airborne radar 
which can be moved quickly. However, playing on the position 
of the platform induces operational constraints that can be more 
or less acceptable but which must necessarily be taken into 
account in the optimization process. Nevertheless, the problem 
may have no solution. For example, the available waveforms 
having the required resolution may have an insufficient 

instrumental domain or the required altitude may be too low to 

place the entire area  before the horizon.  
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Observation:
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Infer disturbance statistics 

to determine whether 

Detection is possible

Operational 
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Observation:

• H1: (Lat., Lon.)
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Periodic 
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Fig. 3. Optimization loop. 

2) Environment Model 
In the general case, the environment obeys a bimodal 

statistics since it results from a mixture of clutter and noise: 

a) Sea-clutter Model: 

Clutter is a multiplicative noise. Its intensity distribution 
can be modelled by a two-parameter Probability Density 
Function (PDF). At low grazing angles (<10°), a widely used 
modelling consists of: 

 The GIT model ( Fig. 4)  o   v   g       c  v    σ
0
  [7].  

 The K-law ( Fig. 5) with a shape factor  for the 
normalized PDF (first order  o            o      )   [8]. 

b) Noise Model 

The thermal noise is an Additive Gaussian Process. Its 
power is therefore distributed according to an exponential law. 
It can be shown that the maximum detection performances of a 
radar on thermal noise does not depend directly on the 
waveform but only on the energy emitted towards the target 
during a processing interval. 

C. Last Phase: Action 

In the case of a manned platform, the recommendations are 
not necessarily automatically applied: they can be only 
suggested to the operator as well as the crew, who can take into 
account other operational constraints in their final choice. In 
the case of a UAS for which a high data-rate and low-latency 
connection cannot be guaranteed, the optimization must be 
carried out automatically. The optimization modalities go 
beyond the radar framework solely because they necessarily 
involve the autopilot of the platform. 

IV. IMPLEMENTATION OF PROPOSED METHOD 

A. Model-based Inference 

1) “Performances and Settings State Equation” 
For a given setting (waveform, processing and platform 

position) and for each small patch M within the area of interest 
Ω, w  d        “state structure” )(MY which contains: 
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 The attainable detection performances: )(MD ; 

 The detection conditions:  FAD PP ,Q ; 

 The waveform, processing, etc. which are selected: W; 

 The platform location, and possibly its velocity: P; 

  PWQMMY ,,),()( D  

The unknown parameters (wind speed and direction, sea 

height, etc.) are expressed    o g    “            o ”,  .g  

being a function of the unk ow  ’ v c o : 

      vectorunknowns,)(  XMYX fg  

2) Inference 
Let us assume that the learning has been done using the 

settings #1 and that we want to predict the achievable 
performance with setting #2. We eliminate the unknown 
parameters by writing (4): 

    11112222 ,,,)(,,,)( PWQMPWQM DD ff    

The attainable performances 2)(MD are then obtained using 

an appropriate resolution method. 

B. Example of Implementation 

In the general case we should consider a mixture of thermal 
noise and clutter. However, for the sake of simplicity, we will 

consider in the following explanations that sea-clutter is the 
main disturbance (i.e. we neglect the thermal noise). 

1) Implementation of Clutter Model 

a) Threshold as Function of PFA: 

According to the sea-clutter modelling proposed in 
paragraph  III.B.2), we can write a couple of formulas: 

 The mean reflectivity 0  depends only on sea-state 

and observation geometry according to the model in  [7]: 

        aW hV ,,dB 0    

where    .log10.dB  ,  is the grazing angle, VW the wind 

speed, ah the average height of waves (sea-state) and   the 

wind aspect angle. By neglecting the curvature of the Earth, 

  RZ /sin  where Z is the altitude of the platform. The 

effect of the altitude change is visible on  Fig. 4. 

 The mean clutter RCS  in a resolution cell is the 
product of the reflectivity (5) by its geometric surface: 

      AdBdBdB 0   

          AhV aW dB,,dB   


where RRA AZ 75.0  is the surface of a resolution cell, 

AZ is the antenna beam-width, R is the distance and R is the 

range resolution of the waveform. 
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Fig. 4. GIT modelling for two particular aspect angle relative to wind. 
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Fig. 5. Complementary Cumulative Density Function in Log scales of 

normalized K-law for three particular shape factors.  

 The normalized Complementary Cumulative 
Density Function (CCDF) of clutter intensity allows 
calculating the PFA as a function of the normalized 
threshold  [8]: 


   T

T
FA KP 








2
)(

2 2


  

This function is monotonic and the detection threshold 

T above the local mean intensity  is got by inverting (7): 
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    FAT P,dB    

According to  [8], the expression of the shape factor is: 

         kA   2cos
3

1
log

8

5
log

3

2
log  

where   is the angle between look direction and swell 

direction and k a constant depending on the polarization of 
waves. The shape factor depends only on geometrical and 
waveform parameters. In  Fig. 5, (7) is plotted for three shape 
factors. Moreover we can make the hypothesis that the wind 
and the swell have the same direction, therefore:   : 

    FAT PA ,,,dB    

The detection threshold is equivalent to a threshold RCS: 

     TT  dBdBdB   

b) Taking into account the aimed PD: 

The probability of detection is a monotonic function of both 

the normalized threshold T  and the Signal to Noise Ratio S : 

     DTTTMIN PS ,/dB/dB    

The function  corresponds to the mode of fluctuation of the 
target RCS, but it depends also on the PDF of the background 

noise. However, when 1T (which is the case when the 

clutter is predominant), the function tends to be independent 

of the PDF of the background noise. Moreover, T may be 

omitted in (12) for the usual values of required PD (> 0.5).  For 
instance, on Gaussian noise and for a Swerling 1 target:  

  .
ln

1
dB

1

ln

1
dB,

1
exp
































DTD
DT

T
D

PP
P

S
P






 

c) State Equation 

Summarizing (6), (10) and (12), we get: 

         

     .,,,

dB,,dB

DFA P ofFunction P ofFunction 

Unknown

  

  



DFA

aWMIN

PPA

AhV









  

So: 

       
      

     .,,,

,,,dB

,dB

aWaW

DFA

MIN

hVhVg

PPAA

f







XX

Y







 

2) Examples of Optimization 

a) Optimization through Range-resolution Change 

The resolution acts directly on the mean clutter intensity 
and indirectly on the relative threshold. The optimization 
consists in solving (16), the unknown being A2: 

    

     .dB,,,dB

,,,dB

1_

2_

11

22















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MIN

MIN

FA

FA

PAA

PAA








 

Once (16) is solved, the selected waveform and related 

processing are the ones whose instrumental domain is 

compatible with the observation of the area of interest . 
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Fig. 6. Method to get a suitable waveform (same PFA in this example). 

b) Optimization through Altitude Change 

If no available waveform fulfils the objective, another 
solution is to change the altitude of observation. However, this 
can be subject to operational restrictions (e.g. impossibility to 
fly under a minimal altitude). The sensitivity gain comes from 
the decrease of the grazing angle. However, the altitude 
reduction of the platform may place the area of interest 
partially beyond the horizon. 
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Fig. 7. Method to get a better altitude. 
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The suitable altitude in obtained in solving (17): 

      

       .dB,,,,

,,,,
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
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

 

V. CONCLUSION AND PERSPECTIVES 

Some applications of cognitive management of radar have 
been described in this paper, focusing on the specificities of the 
Airborne Maritime Surveillance. A model-based approach is 
proposed to overcome the lack of knowledge of environmental 
parameters (e.g. wind-speed, height of sea-waves, wind 
direction). Thank to this model-based approach, it is possible to 
infer the best waveforms among the available ones or the best 
altitude of the platform. However, the problem may have no 
solution despite optimization. This cognitive management will 
be an enabler for future autonomous systems where the sensors 
and the platform will have to optimize themselves to 
accomplish a task. The next step in this study is to extend the 
    od  o     g       c    o  “   -c       +  o   ” and study 
fast algorithms for solving inferences. 

 

REFERENCES 

 
[1] S. Haykin, "Cognitive Radar: a way of the future", IEEE Signal 

processing Magazine, vol. 23, pp-30-40, 2006. 

[2] S.L.C Miranda, C.J Baker, K.D Woodbridge, H.D Griffiths, 
"Knowledge-based resource management for multifunction radar", IEEE 
Signal Processing Mag., vol.23, no.1, pp.66-76, 2006. 

[3] G.T Capraro and al., "Knowledge-based radar signal and data 
processing: a tutorial review", Signal Processing Magazine IEEE, vol. 
23, pp. 18-29, 2006. 

[4] J.R Guerci and all, "CoFAR:Cognitive Fully Adaptive Radar", IEEE 
Radar Conference, 2014. 

[5]  K. L. Bell, C.J. Baker, G.E. Smith, "Cognitive Radar Framework for 
Target Detection and Tracking", IEEE Journal of Selected Topics in 
Signal Processing,, vol.9, pp. 1427-1439, 2015. 

[6] N. Bon, J.M. Quellec, S. Kemkemian, "Method for displaying the 
minimum detectable radar cross-section," European Patent Publication 
WO/2012/101211. 

[7] M. M. Horst, F. B. Dyer and M.T. Tuley, "Radar Sea Clutter Model," 
Proceedings IEEE AP/S URSI Symposium, 1978. 

[8] K. D. Ward, C. J. Baker et S. Watts, "Maritime Surveillance Radar - Part 
1 - Radar Scattering from the Ocean Surface," Proc IEE, Vol 137, part F, 
n°2, 1990. 

 

AUTHORS 

 

 

Stéphane Kemkemian is Senior Radar Expert 

within the Technical Directorate at THALES 

Airborne Systems. He is Design Authority in 

several surveillance programs. He is graduated in 

Aerospace Engineering from ISAE, France.  

 

Vincent Corretja is Research Engineer within THALES 

Airborne Systems. He holds Ph.D. in signal processing. 

 

11th International Radar Symposium India - 2017 (IRSI-17)

NIMHANS Convention Centre, Bangalore INDIA 5 12-16 December, 2017 


	Index

	Session 4

	Author Index


